Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi						
CRM08	Rev 1.10	BS	20-05-2021			

CONTINUOUS INTERNAL EVALUATION- 1

Dept: BS	Sem / Div: IV/ A & B	Sub: Complex Analysis, Probability and Statistical Methods	S Code: 18MAT41			
Date: 24/05/2021	Time: 9:30-11:00 am	Max Marks: 50	Elective: N			
Note: Answer any 2 full questions, choosing one full question from each part.						

Q	Questions	Marks	RBT	COs			
N PART A							
1 a	Derive Cauchy-Riemann equation in the Polar form.	8	L2	CO1			
	Show that the function $f(z)=z^2+2z$ is analytic and hence find its derivative.	8	L2	CO1			
c	If f(z) is analytic, show that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] f(z) ^2 = 4 f'(z) ^2$	9	L2	CO1			
	OR						
2 a	Show that real and imaginary parts of an analytic function are harmonic in Cartesian and Polar form.	8	L2	CO1			
b	Find the analytic function whose real part is $y+e^x \cos y$	8	L2	CO1			
c	Show that $v=2xy-2x+4y$ is harmonic. Find its harmonic conjugate. Also find the analytic function.	9	L2	CO1			
	PART B	I					
3 a	3 a State and prove Cauchy's integral formula.		L3	CO1			
b	Evaluate $\int_{c} \frac{(2z+1)dz}{z^2+z}$ where C is a circle $ z = \frac{1}{2}$	8	L3	CO1			
c	Verify Cauchy's theorem for $f(z)=z^2$ where C is the square having the vertices $(0,0),(1,0),(1,1)$ and $(0,1)$	9	L3	CO1			
OR							
4 a	Evaluate $\int_{0}^{2+i} (\bar{z})^2 dz$ along the (i) line x=2y (ii) the real axis upto 2 and	8	L2	CO1			
	vertically to 2+i.						
b	State and prove Cauchy's Theorem.		L3	CO1			
c	Evaluate $\int_{c} \frac{(z^2+1)dz}{z^2-1}$ where C is a circle $ z-1 =1$	9	L3	CO1			

Prepared by: Madhavi R Pai

-

Alternally.

HOD: Prof. M Ramananda Kamath